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Summary: An axiomatic study is made of 
var1ous criteria for playing games against 
Nature; and a new criterion is suggested. 
The concept of equilibrium point is de
fined for n-person games against Nature. 

GAr.fiES AGAINST NATURE 

John Milnor 

Introduction. 
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We wish to study games of the following type. A matrix is 

given in which a player must choose a row. A column will be chosen 

by "Nature", whose payoff is unknown or identically zero. The pay

off to the player is given by the entry in that particular row and 

column. This entry should represent a von Naumann-Morgenstern 

utility. It is of course also interesting to study the case of an 

infinite game, but this will not be attempted here. 

The following criteria have been suggested for this situation. 

According to Laplace, if the relevant probabilities are unknown, 

we should assume that they are equal. In other words, the player 

should choose the row for which the average of the elements is 

greatest. 

According to the minimax principle which is associated with 

Wald, we should assume that the payoff to Nature is the negative 

of the payoff to the player. The solution is then just the solution 

of the matrix considered as the matrix of a zero sum game. 

A modification of this criterion was suggested by Hurwicz. 

Select a constant · 0 .::;_ 0( ~· 1 which measures the player1 s optimism. 

For each row or probability mixture of rows let m denote the 
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smallest component and M the largest •. According to Hurwicz we 

should select one of those rows, or mixtures of rows, for which 

o(f\·1 + (1-o()m attains its maximum. For o<=O this reduces to 

the Wald criterion. 

-2-

A different modification of the minimax principle is given by 

Savage, who holds that the payoff to Nature should be the "regret", 

"loss", or "miss" which is measured by the maximum of the elements 

of a column minus the particular entry. In other words, the regret 

is the difference between what could have been gotten if the state 

of Nature were known and what actually was gotten. A strategy is 

to be chosen as if the regret matrix were that of a zero sum game. 

The present paper will attempt to study these criteria and 

suggest others on the basis of an axiomatic approach • 

.§I. Axioms for the Laplace, ·,vald, and Hurwicz criteria. 

It will be convenient to make no distinction between rows and 

probability combinations of rows. ·.ve will first consider criteria 

which assign a preference relation > between pairs of rows, or 
rV 

between pairs of probability combinations of rows, satisfying the 

following axioms. 

1.1 The relation ~ is a complete ordering. In other words, 

the following two laws are satisfied. 

l.la For any r and r' either r > r' or r' > r. rv ,..,_.) 

l.lb If r > r' > r" then r > r". rv rv r-J 

1.2 The order of two rows is not changed by the adjunction 

of a new row. 
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1.3 It is not changed by any permutation of the rows or 

columns. 

1.4 If each element of r is greater than the corresponding 

element of r' then r > r'. 

The first of these axioms is somewhat stronger than is neces-

sary, since we only need to know the set of optimal strategies and 

not the complete ordering relation. Axiom 1.2 seems much too 

strong to me. Part of my object in writing section I is to show 

that this axiom is incompatible with others which seem more funda-

mental to me. The criterion of Savage violates this axiom and 

therefore is not considered in this section. Axiom 1.3 is actually 

a part of the description of the problem. That is, we are not 

considering games in which there is any reason to believe that one 

column is more probable than another. Axiom 1.4 has been put in a 

weaker form than is usual since the T:iald, Hurwicz, and Savage cri

teria do not satisfy the stronger condition that r > r' whenever 

r dominates r'. 

Some of the following axioms may also be imposed. 

1.5 The order of the rows is not changed if a constant is 

added to a column. 

c' 

1.6 It is not changed if a new column c' is added, if 

+ • • • + a c n n where a. > 0, 
1 -

1.7 It is not changed if each element P .. 
1J 

+ a == 1 n • 

of the matrix is 

replaced by 

1.8 The ordering relation is continuous in the following sense. 

If a sequence of matrices P. 
1 

converges to P and if for all i, 



~~-679 

I 
r. > r

1
., then the limit rows r and r' 

]_r.J 
satisfy 

1.9 The set of optimal strategies is convex. 

r > r'. 
A) 

Axio~ 1.5 is in part a statement that there is no reason to 

believe that nature is against us. It is also a statement that 

-4-

the utility is linear, not only with respect to known probabilities, 

but also with respect to unknown probabilities of the type under 

consideration. It is satisfied by the Laplace and Savage criteria. 

Axiom 1.6 is satisfied by all but the Laplace criterion, while 1.7 

and 1.8 are satisfied by all four. Axiom 1.9 states that it is 

irrational to be equally willing to play two alternatives and yet 

not be willing to randomize between them. It is violated by the 

Hurwicz criterion for v< > 0 (in the matrix ( ol· ol oo) for 

example) • 

The following assertions will be proved in the appendix. 

Axioms 1.1 through 1.4 are implicitly assumed. 

1.10 If two rows differ only in the order of their elements, 

then they are equivalent. 

1.11 The only criterion satisfying 1. 5 is that of Laplace. 

1.12 For any criterion satisfying 1.6, two rows having the 

same maximum and minimum elements are equivalent. 

1.13 Axioms 1.6, 1.7, and 1.8 imply the Hurwicz criterion. 

1.14 Axioms 1.6, 1.8, and 1.9 imply the Wald criterion. 

§II. Alternative Axioms. 

Since the nine axioms considered in section I have been shown 

to be inconsistent, it is natural to try and pare them down to a 
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set of more fundamental axioms. The following is a list of those 

axioms which I personally feel to be most important. Others would 

doubtlessly set up completely different lists. Let S denote the 

simplex of mixed strategies over the rows. 

2.1 There is a choice set C{Pij) which is contained in S. 

p 
• ij in the following 2.2 This set depends continuously on 

sense. If 

approaches 

set. 

approaches Pij' 

x, then xEC(Pij). 

2.) C is convex. 

xk E C ( p ijk) for each k, and 

In particular c is a closed 

2.4 The choice set is invariant under permutations of the 

rows or columns. 

2.5 Every element of C is admissible (undominated). 

2.6 The choice set is not changed if a new column, identical 

with one of the old, is added. 

These axioms are not compatible with any of the criteria under 

consideration. That of Laplace violates 2.6, while those of Wald, 

Hurwicz, and Savage violate 2.5. It is of course possible to inter

sect the choice set of 1Hald, Hurwicz, or Savage with the set of 

admissible strategies, and thus obtain a new criterion. The result 

violates 2.2 however. The Hurwicz criterion also violates axiom 

2.3, providing that c< > 0. 

As an example of the discrepancy between these axioms and the 

four criteria consider the following family of games, where 

0 < k < 1. 
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Let 

1//0 0 1 1 

1 1 0 0 

1 0 k 1 

1 k 0 1 

denote the probability of playing the ith row for 

-6-

i = 1, 2, 3, 4. For k=l, each of the first two rows is dominated 

by one of the last two. For any criterion satisfying 2.5, there

fore, each point of the choice set must satisfy a 3 + a4 = 1. By 

continuity a 3 + a4 must be close to one for k close to one. 

Solutions by the four criteria, and graphs of these solutions 

follow. It may be that a player who uses the Savage criterion will 

take the symmetries of the matrix into account and consider only 

symmetrical strategies (that is strategies with a 1 = a 2 , a 3 = a 4 ). 

The solution in this case is also included below, since it illus~ 

trates the dependence of the Savage solution on the set of strat-

egies considered. 
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Criterion 

Admissibility 

Laolace 

1tJald 
and 
Savage 

Savage 
Symmetrical 
Solutions Only 

Hurvvicz 
< 1 

o< = 1 

Game 

k< 1 

k=l 

k=O 

0< k 

k< 1 

k=l 

k< 1-2 C>( 

1 >k >1-2 '';>\. 

k=1-2 o\ 

k=l 

. . . 
0 

. . . 
0 

1 
2 

al 

1-k 
2 ( 2-k) 

1 
2 

0 

. . . . 
k 

1+k 

0< ~>/ < l 
_: ~ '1...:; 2 

. . . . 
a2+k-ka 2 

1+k 

0 

. . . . 
al+a3= 1 

2 

0<'1 = 0 or 

. . anything 

0 a3 

. . anything 

0 a3 

1 0 2 
az a3 

1-k 1 
2 ( 2-k) 2(2-k) 

1 0 2 

k 1 
1+k 1+k 

. . or . 

0 0 

a 1 +k-ka 1 l-2a 1 
l+k l+k 

or . 
0< az.:::. 

l 0 2 

a2+a4= l l 
2 2 

. or . 
0 

o<z 0 

+ 

+ 

-7-

. . . . 
a4 = 1 

. . . . 
a4 = 1 

0 

a4 

1 
2(2-k) 

0 

0 

1 
l+~ 

0 

l-2a2 

l+k 

1 
2 

. 

. 
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l 

1 
2 

0 

l 

1 
2 

0 

GRAPHS OF SOLUTION 

t Laplace Solution 

:- --- - -
Hurwicz Solution 

l c:x: = 4 

__ _j 

0 l 
2 

t k 

Savage Symmetrical Solution/ 
/ 

-

0 

-

1 
2 

k 

l 

1 

·,vald-Savage 
Solution 

-8-
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.§III. Other Criteria. 

A general class of decision criteria related to that of 

Laplace are those which construct a linear "utilityn function on 

the simplex S. The choice set is then the subsimplex of points 

which maximize this function. 

-9-

Since we are only interested in differences of utility, there 

is no need to distinguish between functions which differ by a 

constant. This identification of functions is best accomplished 

by considering changes in stratef,y instead of fixed strategies. 

For any linear function u and change of strategy !::::,. s the 

function 

u':< ( ,L.s) u(s+6s) - u(s) 

is independent of s, and does not change if a constant is added 

to u. .cJe 'tfish, therefore, to study linear function which are 

defined for all £::, s and which vanish for 6 s=O. Let 6 denote 

the space of strategy changes L::. s. If an element of S is rep-

resented by coordinates (a 1 , • • • ' am) ' a 1 + ••• + a m 1' 

ai ~ 0; then an element of L is represented by ( =<> 1 , ••• , e>< m) 

o<,+···+o< 
m 

sets of distinct 

0, such that for all 

. . . ' i, . 
K 

The set of linear functions on 

~ which vanish at the origin form a vector space which may be 

denoted by U. 

Corresponding to each mixed strategy for Nature, that is 

each probability combination of columns, there is a linear function 
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on S and therefore a point in U. If Nature plays the column 
,., 

c = (c 1 , ••• , em) and the change of strategy 0' = ( o< 1 , • • • , o<'m ) 

is made by the player, the gain to the player is the inner product 

+•••+co<. m m 

This product defines the linear function on 6. corresponding to 

this strategy of Nature. The set of all points which correspond 

to mixed str3.ter;ies for Nature forms a convex set NCU. It seems 

reasonable that the function we should construct should be a 

point of N so that the solution will be a Bayes solution. This 

condition is equivalent to the following. 

3.2 For any pair of rows or probability mixtures of rows r 

and r', the linear function u satisfies 

' u(r-r') <!~lax (rj-rj) 
j 

where j runs over all columns. 

In particular if each component of r is less than the cor

responding component of r' then u(r) < u(r'), which is just 

axiom 1.4. 

In this context the problem of choosing a decision criteria 

becomes simply the problem of defining a unique point in each con-

vex set N in some suitable way. Since we wish to assume some 

type of average behavior for Nature, this point may be considered 

as a center for N. The Laplace criterion is that obtained by 

takinr; the center of r;ravity of the vertices of N, the weight of 

each vertex being the number of times the corresponding column 
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appeared in the matrix. An obvious modification of this would be 

to take the center of gravity of the convex set N; but this is 

unfortunately discontinuous when N changes dimension. 

One especially simple case occurs when N is a line segment. 

Any reasonable definition for center will then specify the midpoint 

of N. This occurs in two cases. If the original matrix has two 

columns, then these columns generate a line segment, the center of 

ivhich p;i ves the Laplace solution. If, on the other hand, the 

matrix has two rows, then the space of linear functions, and there-

fore N will again be one dimensional. The midpoint in this case 

corresponds to the follovV'ing rule. 

J .1 In the matrix (al an) 
b b' 1 n 

choose the first or second 

row according as Max (a .-b.) 
J J 

is greater than or less than 

Max 
j 

(b.-a.). 
.1 J 

mixture. 

,i 
In case equality holds, choose either one or any 

This may also be fonnulated as follov·JS. Assume that Nature 

will play that colwnn for which the player's decision makes the 

most difference. 

One possible procedure for defining such a center for N will 

be given. Many others are possible, however, and I have no strong 

justification for this one. It is motivated by the following idea. 

If a decision procedure of this type cannot satisfy axiom 1.2, we 

can at least require that it come as close as is possible to satis-

fying it. In particular we can require that for every two row sub

matt•ix, the utility of changing from one row to another should be 
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as close as possible to the utility of making this change in the 

full matrix. For utility function u E".. N the utility of making 
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the change 8 is u( o"). In the two row submatrix, the utility 

of changing from r = (a 1 , ••• , an) to r' = (bl, ••• , bn), using 

the midpoint solution just mentioned, is 

'tle •.vish therefore to find which u EN can be considered as the 

best approximation to f. 

Now since f is defined in terms of the operations I''lax and 

%in applied to a finite number of linear functions over 6, 

there is some polyhedral decomposition of 6 such that the function 

f, and the ref ore u- f, is linear on each polyhedron of the decompo-

sition. It is therefore sufficient to know the values of u-f on 

the vertices of these polyhedrons in order to tell how well u 

approximates f. Specify the function u by the following three 

requirements. 

3.2 'fhe maximum value of lu-f\ shall be as small as possible. 

3.3 The set of vertices on which this minimax value is attained 

shall be as small as possible. 

This last condition is meaningful since, if u 1 and u 2 attain 

the minimax value on different sets, then attains this value 

at most on the intersection of these two sets. Therefore by aver-

ap;inp; a finite number of such functions we obtain a function which 

attains this value on a smallest possible set of vertices. The set 
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of u e. N which satisfy these two conditions forms a convex set, 

whose closure may be denoted by N1 • Let v 1 denote the set of 

vertices at which these functions take on values less than this 

maximum. ';{e have thus proceeded from the set N=N 0 and the set 

v0 of all vertices to smaller sets havin~ the same properties. 

We now proceed inductively. 

3.4 Given sets N1 and vi take the set Ni+l of limit 

points of functions satisfying 3.2 and 3.3 and the set vi+l of 

vertices where the maximum value need not be attained. Repeat 

until is vacuous. The set will then consist of a 

single point which is the required function u. 

-13-

The criterion which is specified by this rule satisfies all 

of the axioms of section II, and all except 1.2 of section I. The 

following simple example will be worked out to illustrate the rule. 

(~ 
1 

4 

1 

If an element of 6 is represented by a triple ( c< ,1C:, O) , then 

the vertices of 6 (which is a hexagon) are (1,-1,1). The func

tion f is derived from the three functions 

~+4~+ 0 

by the operations Max and Min. It is therefore nonlinear whenever 
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two of these functions are equal. This defines the three lines 

5 M + ;5 + 4 ( """' + 4;6' + 0 or 4 e>'.. + 3 ~ = ~, 

20'\ = r' and 2 c.-<. + 3 0 = ;y6. 

The vertices of the polyhedrons formed by these lines and ~, 
6 1 

(- 7'- 7' 1 )' other than (0,0,0) and the six already mentioned are 

{~,~,-1}, (~,~,-1)' (- ~,- ~,1)' (1,- ~,- ~)' (-1,~,~). Listing 

one vertex from each pair consisting of a vertex and its negative, 

we have the following table. 

rvlax c. cf Tv1in C• rf 
Vertex d' c c f 

(1,-1,0) 4 -3 1 
2 

(1,0,-1) 1 -1 0 

(O,l,-1) 3 -3 0 

6 1 11 - J ..2.. (- 7'- 7,l) 7 7 14 

1 2 2 2 1 
(J'J,-1) 3 b 

( 1,- 1 - ~) 11 1 1 
5' 5 5 5 2 

If u( o-.. ,;8, a) = a~+ b/, then the vertices of N are the 

three points (a,b) = (1,-3), (0,3), and . (-1,-2). The point 

1 1 (a,b) (15 ,- 3) is in the triangle N and is a best approxima-

tion to f, using 3.2 alone. The values of u are shown in the 

following table. 
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f(d') u ( d') I f-u ~ 

1 2 1 
2 5 10 

0 1 1 
15 I5 

0 1 1 
- 3 3 

.2.. 1 11 
14 - 105 30 

1 1 ll 
b - 5 30 

1 2 11 
2 15 30 

Using this function u as utility function, we find that it is 

worth 1 
15 

to switch from row 3 to 1; and worth 

from 2 to 1. The choice set is therefore row 1. 

6 
15 

to s'..vitch 

-15-

I have not computed the example of section II in detail, but 

it seems that the solution is identical v,rith the Laplace solution 

in this case. The function u depends on k in a fairly compli-

cated way, however. 

§IV. n-person Games. 

Consider a game of the following type. Each of n persons 

makes a move si out of a set of possible moves Si, i: l, ••• , n. 

Simultaneousl~ nature makes a move s 0 out of a set of possible 

moves S0 • The payoff Pi(s0 ,s 1 , ••• , sn) is defined for 

i = 1, ••• , n. As an example of this consider a game in which 

the players have incomplete information as to the rules. This may 

be treated as a case in which nature chooses a particular set of 
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rules s 0 out of a set of possibilities. 

Suppose that each player has some criterion which he believes 

in for t;ames against nature. Then if each player except i has 

made a choice of strategy beforehand, the ith player is playing 

a one person game against nature, and can apply his criterion. By 

an equilibrium point of such a game will be meant a set of strategies 

s 1 , ••• , sn possessin~ the following property. For each i, if 

players 1, ••• , i-1, 1+1, ~··r·It holdthe,ir:strategies_fixed, 

then according to player irs criterion s 1 ·is one of the optimal 

strategiet in the resulting game between player i and nature. 

This is a generalization of the definition of equilibrium point 

for ordinary n-person games which was given by John Nash. 

Theorem. If each player has a criterion satisfying axioms 

2.1, 2.2, and 2.3 then there exists at least one equilibrium point. 

The proof by the Kakutani fixed point theorem follows Nash's 

proof. 

In most applications different players will have different 

amounts of information as to what nature will do. The game which 

we have considered does not take this into account as it stands; 

but this game can be considered as a normal form for a much wider 

class of games. This reduction to normal form is illustrated by 

some of the examples which follow. 

cJIJe will consider variations in the following game which was 

suggested by E. 'JJ. Paxson. It is modeled after a ''no limit'' poker 

game. Players I and II have resources M > 0 and N > 0 respec

tively. Each knows his own resources but may have incomplete 
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information as to his opponent's. Each has a choice of matching 

or not matching. If they match, the one with higher resources 

wins the resources of the other. In case of a tie, no exchange 

is made. If one player fails to match, he is penalized half his 

resources, and the other player collects this amount. If both 

fail to match, each is penalized half his resources and no one 

collects. If 0 denotes matching and 1 denotes not matching, 

we have the following matrix. 

y=O y=l 

N,-N ifi'Il>N 

x=O 0,0 if{.I'I=N 

-.ivl,Ivi if I'l< N 

x=l 

The equilibrium points, under the assumption that both players use 

the Savage criterion, are given below. 

4.1 Each player knows his own resources but has no information 

about those of his opponent. In this case there are two equilibrium 

points. One at x=O, 1 and the symmetric at 1 y=O. y=- one x=4' 4 
This non-unique answer seems to be caused by the unboundedness of 

the set of possible resources, rather than by the non-zero sum nature 

of the matrix. This is illustrated by the following case. 

4.2 Each player is told only his own resources, but both are 

given the information that 0 < Iii < 1, 0 < N < 1. There is now a 
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unique equilibrium point at 

[ .0262 x = Nin 1 .1569, • 5 524 + M 
L 

~0246+1.040M-l.Ol9M2 1 
6M j 

where y is the same function of N. The graph of this function 

looks roughly as follows. 

1 

X 

0 
1 

The motivation for the greater tendency to match '11/hen the resources 

become very small, is simply that there is very little to lose in 

this case and a great deal to gain in case the opponent passes with 

larger resources. 

4.3 The resources are again allowed to be arbitrarily large. 

Each player is told his own resources and given an upper and lower 

bound for the resources of his opponent. In other words Nature 

chooses the six numbers 

0 < N ' < N < N" and 0 < Ivl ' < K < fv1" • 

Player I is told lVl,N', and N". Player II is told N,J\;1', and III". 

The matrix is as before. In this case there is again a unique 

equilibrium point in which the two players have the same strategy. 
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This strategy is given by 

I 0 for Nn < M 

1 for NT < rvi < NIT < 141\1 
I 4 -I 
I 4M 

X = for M < NT and 2Iv1 < N" NTT+2M 

or for 14M < Nil -
1 for M < NT and N" < 2!11 

A graph of X as a function of follows. 

for NT > M and the lower branch for NT < K. 

1 

X 

0 

/ 
I 

l!'~------, 

0 1 

-19-

The upper branch is 

1.5 

The solutions to this example by the criteria of section III 

are much simpler. I do not know how to extend this criterion to 

infinite games in general. For these particular examples, however, 

since there are only two alternatives for the player, the solution 

may be obtained from J.l. 

For the games 4.1 and 4.2 the solution is to match (play x=O) 

in all cases. For 4.3 the solution is to match whenever NT < M, 

that is, whenever it is possible that N .S r"1, and to pass otherwise. 
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APPENDIX 

I. Proofs of assertions in section 1. 

1.10 Suppose (P 1 P2 P3 ··• Pn) > (P2 P1P3 ••• Pn). Interchanging 

the first two columns \ve have (P2 P1 P3 ••• Pn) > (P 1 P2 P3 ••• Pn) 

which is a contradiction. Since any permutation of the elements can 

be achieved by successive interchanges of pairs of elements, the 

conclusion follows. 

1.11 Suppose the average of the elements of r equals the 

average of the elements of r'. Alternately perform the following 

operations on the two row submatrix formed by r and r'. 

a) Permute the elements of each row so that they are in 

order of increasing size. 

b) Subtract from each column the minimum of its element. 

After a finite number of steps, all of the components of the matrix 

will be zero, and there fore r rvr' • 

It follows by 1.4 that if the average of the elements of r is 

greater than the average of the elements of r', then r > r'. 

1.12 It is sufficient to show that if m < P. < M then 
l-

(m,m, ••. , m,lV1) is equivalent to (m,P 1 , ••• , Pn_ 2 ,N). Alternately 

applying 1.10 and 1.6 we have the following sequence of pairs of 

equivalent rows. 
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(:· M)--~(M m) (1'•1 M ~l M ·· m M ~ m m J 
/ 

~-1 M) --7( m P, Pn-2 I~'I ~i) --7(: m M m m m m 

The next to the last column may be removed by reversing all but the 

last step. 

1.13 By 1.12 it is sufficient to consider pairs (Jv1. ,m. ) 
l l 

satisfying M. > m. 
l- l 

of o<-. such that 

in place of rows. Let be the supremum 

( o<. M. + ( 1- C>'\) rn. , 0'\ H. + ( 1- .?<) m. ) < (rll
1
. , rn

1
. ) and 0 < o<. < 1. 

l l l l "'-' 

By axiom 1.7 the ~ . which is obtained is independent of i 
l 

Providin.~) only that ¥ > m 
. '

1 i i. Denote it by C?\. By axiom 1.8, 

It follows by axiom 1.4 that the criterion is that of Hurvlicz. 

1.14 Again consider pairs (M,m). In the game given by the 

matrix 

(~ m m) 
m ' 

since the choice set is s~nmetric and convex it must contain the 

average of the two rows which is 
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Therefore (M,m) ~(M;m,m). By repeated application of this rule 

together with the axiom of continuity we find that (I'1 ,m) < (m ,m). 
~ ..... 

It follows by axiom 1.4 and continuity that (I>l,m) > (M' ,m') if 
""" 

and only if m .2: m', which is the minimax criterion. 

II. Derivation of Hurwicz solution for the given matrix. 

We wish to choose the ai so as to maximize 

+ (1-~) Min (a2 + a 3 + a4 , a 2 + ka4 , a 1 + ka2 , a 1 + a 3 + a4 ) 

= o<.Max (a2 + a 3 + a4 , a 1 + a 3 + a4 )t(l-e><) Ivlin (a2 + ka4 , a 1 + ka3). 

This maximum can only be achieved if a2 + ka4 = a 1 + ka 2 providing 

that o( < 1 • Assume for example that a 2 .2: a 1 • This impll.es 

0 for otherwise by decreasing the value of a4 and 

increasing a 2 and a3 we could increase the value of the expres

sion. The equations 

az al + ka 3 

al + a2 + a3 0 yield 

a2 
a 1 +k-ka 1 a3 = l-2al . 

l+k l+k 

This together with 0 < a 1 ~ a 2 
1 1 

determines a line segment one end 

of which is (2,2,0,0) and the other end of which is k k 
(O,l+k'l+k'O) • 

The expression is a linear function on this segment and therefore 

takes its maximum either at one end or on the entire segment, as 

is tabulated in section IIo 
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